tesla-stock-forecasting

๐Ÿ“ˆ Advanced Time Series Forecasting of Tesla Stock

Comparative Analysis of Classical, Seasonal, and Deep Learning Models with Exogenous Predictors


๐Ÿง  Overview

This project presents a comprehensive time series forecasting framework for Tesla Inc. (TSLA) stock using a range of modeling techniques:


๐Ÿ“Œ Project Details


๐Ÿ› ๏ธ Tools & Libraries


๐ŸŽฏ Objectives


๐Ÿ” Model Suite


โœ… Results Summary

Key Insights:


๐Ÿ“ Project Structure

tesla-stock-forecasting/
โ”œโ”€โ”€ data/
โ”‚   โ””โ”€โ”€ raw/
โ”œโ”€โ”€ src/
โ”‚   โ”œโ”€โ”€ models/
โ”‚   โ”‚   โ”œโ”€โ”€ classical/
โ”‚   โ”‚   โ””โ”€โ”€ deep_learning/
โ”‚   โ”œโ”€โ”€ preprocessing/
โ”‚   โ””โ”€โ”€ visualization/
โ”œโ”€โ”€ notebooks/
โ””โ”€โ”€ results/

๐Ÿ”ฎ Future Work


๐Ÿ“ฌ Contact

Sospeter Njenga Wainaina
๐Ÿ“ง sospeternjenga03@gmail.com
๐Ÿ“ Nairobi, Kenya

๐Ÿ”Ÿ Conclusion & Recommendations

โœ… Best Performing Model

After evaluating six models โ€” AR, MA, ARIMA, SARIMA, SARIMAX, and LSTM, and implementing a Hybrid ARIMA + LSTM, we conclude:

๐Ÿ”ฅ Hybrid ARIMA + LSTM is the most accurate model for forecasting Tesla stock prices.


๐Ÿง  Model Strengths by Category

Model Strengths Best Use Cases
AR / MA Simplicity, fast computation Short-term trend capturing, quick benchmarks
ARIMA Handles non-stationarity Medium-term forecasting without seasonality
SARIMA Accounts for both trend + seasonality Monthly/quarterly financial patterns
SARIMAX Integrates external variables like volume or lagged returns Multivariate forecasting, macro-driven influence
LSTM Learns complex, nonlinear temporal dependencies High-volatility prediction, adaptive learning
Hybrid ARIMA models trend, LSTM models residuals (nonlinear patterns) Highly volatile, non-linear series like stocks

โš ๏ธ Limitations


๐Ÿš€ Future Improvements